
 
Goinorm Assumerings are Noetherian

systems of parameters and the PIT give us the following
result about algebras over local rings
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we can extend this to a result about the dimension of local
R algebras
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What is this saying geometrically Note that
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so spec Vms is the fiberof the corresponding Spec map

Roughly
if 4 X y is a map of sufficiently nice varieties or schemes

4 x y w S and R the Corr local rings respectively
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Ex Define 4 Cx C T
ly.my and consider the induced

map on local rings

Cda EG e E P EEGky
yil

Il 11 x y

R S dim.fmsYj
thisdipmoratt

So dims dim R t dim s dims L
J dim at this

Point
I 1 I drink



There are even irreducible examples where the inequality
is strict e.g a surface blown up at apoint

For ftat R algebras and integral extensions which we won't

prove equality holds To prove this in the flat case we

need the following
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This immediately implies the classical going down theorem

Goi fate hs 4 R S as in Iemma

If Poop Pu is a chain of primeideals in R and

Qof S prime such that 4 Oeo Po then there's a
chain of primes Qoo Q Qu in S with 4 Qi Pi



Thus we just need to provethe lemma
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Let Q'EQ be a prime minimal over P'S

We want to replace R S with Rlp Shoes and

assume P 0 First we need that Stp's is flat
over R p1

let M M Mpl modules Thenthey are R modules
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so Mp's is flat over Rpi So assume P O Thus

we want to show 4 Q O

Since 5 is flat over R it is torsion free over R Since

R is an integral domain 0 is prime this means



all elements of R are NZD on S

Q is a minimal prime of S so it's an associated

prime of OES Thus Q Eo consists of zero divisors

on S so 4 Q1 O D

Now we can show that equality in the theorem holds for
flat algebras

Cer let 4 R m S n be a map of local rings such
that the image of m is in n and S is flat over R
Then

dims dim Rt dimSms

Rf We already showed one inequality so we just need
dims dimR dim4ms
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Going down says F Q Q Z Qd s t 4 Qi Pi
Thus codimQ2 dim R D

we can now finally calculate the dimension of a polynomial

ring

Them If R is a ring then dimRCx I tdimR Inparticular

if k is a field dim KCxi Xr r

PI The second statement follows from the first by induction
on h

For the first statement let PoE EPd a chain of

prime ideals in R Then PiRCH is the polynomials
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For the other inequality note that
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Thus it suffices to show that for Max I m ERCx
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Let P MAR Then the map Rp REX m sends

PRp into MRCDm so by the theorem at the

beginning of the section

dim RED E dim Rp dim R mym pRCxJm
r
EdinR

l want this to be e

Note that since RAM P we have R m Rpk m
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of M in it is principal Thus the PIT says
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and we're done D


