Going down Theorem (Assume rings are Noetherian)

Systems of parameters and the PIT give us the following result about algebras over local rings:

Prop: Let (R, m) be a local ring and $\varphi: R \rightarrow S$ with $m S \neq S$. Then codim $m S \leq$ codim m.

Pf: First note that $m \subseteq \varphi^{-1}(m s) \neq S$, so $\varphi^{-1}(m s)=m$.

Let $x_{1}, \ldots, x_{d} \in m$ be a system of parameters for R and set $I=\left(x_{1}, \ldots, x_{d}\right) S$. Let P be a minimal prime over $m S$ and suppose

$$
I \subseteq Q \subseteq P
$$

where Q is prime. Then

$$
\left(x_{1}, \ldots, x_{d}\right) \subseteq \varphi^{-1}(I) \subseteq \varphi^{-1}(Q) \subseteq \varphi^{-1}(P)=m
$$

m is minimal over $\left(x_{1}, \ldots, x_{d}\right)$, so $\varphi^{-1}(Q)=m$. Thus, $m S=\varphi^{-1}(Q) S \subseteq Q$ so $P=Q$. Thus P must be minimal over I, which is generated by d elements. Thus codim $m S \leq d=$ codim m.
pit

We can extend this to a result about the dimension of local R-algebras:

Theorem: Let $\varphi:(R, m) \rightarrow(S, n)$ be a map of local rings st. $\varphi(m) \subseteq n$. Then

$$
\operatorname{dim} S \leq \operatorname{dim} R+\operatorname{dim} S / m S
$$

Pf: Let $x_{1}, \ldots, x_{d} \in m$ be a system of parameters for R and $y_{1}, \ldots, y_{e} \in h$ such that their images in $S / m S$ form a system of parameters.

In particular, $d=\operatorname{dim} R, \quad e=\operatorname{dim} \mathrm{S} / \mathrm{mS}$.

Then the image \bar{n} of n in $s / m s$ is the axil ideal, so

$$
\begin{aligned}
& \bar{n}^{\alpha} \subseteq\left(\overline{\left(y_{1}, \ldots, y_{e}\right)} \text { for } \alpha \gg 0\right. \\
\Rightarrow & n^{\alpha} \subseteq\left(y_{1}, \ldots, y_{e}\right)+m s
\end{aligned}
$$

and for $\beta \gg 0, m^{\beta} \subseteq\left(x_{1}, \ldots, x_{\alpha}\right)$. Thus

$$
\begin{aligned}
n^{\alpha \beta} & \subseteq\left(\left(y_{1}, \ldots, y_{e}\right)+m S\right)^{\beta} \\
& \subseteq\left(y_{1}, \ldots, y_{e}\right)+m^{\beta} S \\
& \subseteq\left(y_{1}, \ldots, y_{e}, x_{1}, \ldots, x_{d}\right) S, \text { so }
\end{aligned}
$$

n is minimal over. Thus the PIT says

$$
\operatorname{dim} S \leq d+e . D
$$

What is this saying geometrically? Note that

$$
S / m S=R / m \otimes_{R} S=k(m) \otimes_{R} S,
$$

so $\operatorname{spec}(\mathrm{s} / \mathrm{ms})$ is the fiber of the corresponding Spec map.
Roughly,
if $\Psi: x \rightarrow Y$ is a map of (sufficiently nice) varieties or schemes $\Psi(x)=y \quad w / S$ and R the corr. local rings, respectively, then $\operatorname{dim} R=\operatorname{codim} y, \quad \operatorname{dim} S=\operatorname{codim} x, \operatorname{dim} S / m S=\operatorname{dim} \varphi^{-1}(y)$.

In particular, if x and y are closed points, then we have the following picture. In this situation,

$$
\operatorname{dim} X \leq \operatorname{dim} Y+\operatorname{dim} \varphi^{-1}(y)
$$

Note that equality doesn't always hold:

Ex: Define $\varphi: \mathbb{C}[x] \rightarrow \mathbb{C}[x, y] /(x(y-1))$ and consider the induced map on local rings

$$
\begin{aligned}
& \left.\underset{{ }^{\prime \prime}}{\mathbb{C}[x]_{(x)} \longrightarrow(\mathbb{C}[x, y] /(x(y-1)))_{(x, y)} \cong\left(\mathbb{C}[x, y]_{(x, y)}\right)} \underset{(x)}{ }\right) \cong \mathbb{C}(y)_{(y)} \\
& { }^{\prime \prime} \quad{ }^{\prime \prime}
\end{aligned}
$$

So $\operatorname{dim}_{i} S<\operatorname{dim}_{i} R+\operatorname{dim}_{i} S /(x) S$

There are even irreducible examples where the inequality is strict (e.g. a surface blown up at a point).

For flat R-algebras (and integral extensions -which we won't prove), equality holds. To prove this in the flat case, we need the following:

Lemma: Let $\varphi: R \rightarrow S$ s.t. S is flat over R. If $P^{\prime} \subseteq P \subseteq R$ are prime ideals and $Q \subseteq S$ prime sit. $\varphi^{-1}(Q)=P$, then there is a prime $Q^{\prime} \subseteq Q$ s.t. $\varphi^{-1}\left(Q^{\prime}\right)=P^{\prime}$ Moreover, Q^{\prime} cam be taken to be any prime contained in Q and minimal over $P^{\prime} S$.

This immediately implies the classical going down theorem:

Going down Theorem (for flat extensions): $\varphi: R \rightarrow S$ as in lemma. If $P_{0} \supset P_{1} \supset \ldots \supset P_{n}$ is a chain of prime ideals in R and $Q_{0} \subseteq S$ prime such that $\varphi^{-1}\left(Q_{0}\right)=P_{0}$, then there's a chain of primes $Q_{0} \supset Q_{1} \supset \ldots \supset Q_{n}$ in S with $\varphi^{-1}\left(Q_{i}\right)=P_{i}$.

Thus, we just need to prove the lemma.

Pf: $P^{\prime} \subseteq P=\varphi^{-1}(Q)$, so $\quad P^{\prime} S \subseteq \varphi^{-1}(Q) S \subseteq Q$.

Let $Q^{\prime} \subseteq Q$ be a prime minimal over $P^{\prime} S$.

We want to replace $R \rightarrow S$ with $R / p^{\prime} \rightarrow S / p^{\prime} S$ and assume $P^{\prime}=0$. First we need that $S / p^{\prime} s$ is flat over $R / p 1$:

Let $M^{\prime} \hookrightarrow M \quad R / P^{\prime}$-modules. Then they are R-modules, so by flatness of S, we have

$$
\begin{gathered}
S \otimes_{R} M^{\prime} \hookrightarrow S \otimes_{R} M \\
S \otimes_{R}\left(R / p^{\prime} \otimes_{R / p^{\prime}}^{\prime \prime} M^{\prime}\right) \hookrightarrow S \otimes_{R}\left(R / p^{\prime} \otimes_{R / p^{\prime}} M\right) \\
\underbrace{\left(S \otimes_{R}^{R / p^{\prime}}\right)}_{S^{\prime \prime} /{ }^{\prime \prime} / P^{\prime \prime} S} \otimes_{R / p^{\prime}} M^{\prime} \hookrightarrow\left(S \otimes_{R}^{R / p^{\prime}}\right) \otimes_{R / p^{\prime}} M \\
S^{\prime \prime} / p^{\prime} S
\end{gathered}
$$

so $s / p^{\prime} s$ is flat over R / p^{\prime}, so assume $P^{\prime}=0$. Thus, we want to show $\varphi^{-1}\left(Q^{\prime}\right)=0$.

Since S is flat over R, it is torsion-free over R. Since R is an integral domain (0 is prime), This means
all elements of R are $N Z D$ on S.
Q^{\prime} is a minimal prime of S, so it's an associated prime of $O \subseteq S$. Thus $Q^{\prime}-\{0\}$ consists of zero divisors on S, so $\varphi^{-1}\left(Q^{\prime}\right)=0$.

Now we cen show that equality in the theorem holds for flat algebras:

Cor: Let $\varphi:(R, m) \rightarrow(S, n)$ be a map of local rings such that the image of m is in n and S is flat over R.
Then

$$
\operatorname{dim} S=\operatorname{dim} R+\operatorname{dim} S / m S
$$

Pf: We already showed one inequality, so we just heed $\operatorname{dim} S \geq \operatorname{dim} R+\operatorname{dim} S / m S$.

Let $Q \subseteq S$ be a prime minimal over $m S$ sot.

$$
\operatorname{dim} S / Q=\operatorname{dim} S / m S
$$

Then $\operatorname{dim} S \geq \operatorname{dim} S / Q+\operatorname{codim} Q=\operatorname{dim} S / m S+\operatorname{codim} Q$.
Thus, it suffices to show $\operatorname{codim} Q \geq \operatorname{dim} R$.
Q contains $m S$, so $\varphi^{-1}(Q)=m$. Let $m \ngtr P_{1} \nsupseteq \not \supset P_{d}$ be a max'l length chain sot. $d=\operatorname{dim} R$.

Going down says $\exists Q \nsupseteq Q_{1} \not \supset \ldots \supsetneq Q_{d}$ s.t. $\varphi^{-1}\left(Q_{i}\right)=P_{i}$.
Thus, $\operatorname{codim} Q \geq \operatorname{dim} R$.

We can now finally calculate the dimension of a polynomial ring:

Thu: If R is a ring, then $\operatorname{dim} R[x]=1+\operatorname{dim} R$. In particular, if k is a field, $\operatorname{dim} k\left[x_{1}, \ldots, x_{r}\right]=r$.

Pf: The second statement follows from the first by induction on r.

For the first statement, let $P_{0} \underset{\sim}{\subset} \ldots \subsetneq_{T} P_{d}$ a chain of prime ideals in R. Then $P_{i} R[x]$ is the polynomials $w /$ coefficients in P_{i}. Thus, we have

$$
\begin{aligned}
P_{0} R[x] \subsetneq \ldots \subsetneq P_{d} R[x] & \underbrace{P_{d} R[x]+(x)}_{\downarrow} \\
& R[x] / P_{d} R[x]+(x) \\
P_{\uparrow}\left(R / P_{d}[x]\right) /(x) & \cong R / P_{d}
\end{aligned}
$$

a chain of primes in $R[x]$. Thus, $\operatorname{dim} R[x] \geq \operatorname{dim} R+1$.

For the other inequality, note that

$$
\operatorname{dim} R[x]=\sup \{\operatorname{codim} m \mid m \subseteq R[x] \text { maximal }\}
$$

Thus, it suffices to show that for max'l $m \subseteq R[x]$,

$$
\text { codim } m \leq \operatorname{dim} R+1
$$

Let $P=m \cap R$. Then the map $R_{p} \rightarrow R[x]_{m}$ sends $P R_{p}$ into $m R[x]_{m}$, so by the theorem at the beginning of the section,

$$
\operatorname{dim} R[x]_{m} \leq \operatorname{dim} R_{p}+\underbrace{\operatorname{dim} R[x]_{m} / P R[x]_{m}}_{\qquad d_{i m} R}
$$

Note that since $R \cap m=P$, we have $R[x]_{m}=\left(R_{p}[x]\right)_{m}$.
Thus,

$$
\begin{aligned}
R[x]_{m} / P R[x]_{m} & =\left(R_{p}[x]\right)_{m} /\left(P R_{p}[x]\right)_{m} \\
& =\left(R_{p} / P R_{p}\right)[x]_{m} .
\end{aligned}
$$

$R_{p} / P R_{p}$ is a field, so $\left(R_{p} / P R_{p}\right)[x]$ is a $P(D$, so the image of m in it is principal. Thus, the PIT says

$$
\operatorname{dim}\left(R_{p} / p R_{p}\right)[x]_{m} \leq 1,
$$

and we're done.

